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Backup and restoring previous versions

How?
Git of course!

A distributed version control system (VCS)

Tracks changes in code and text files

Enables collaboration across different versions

Supports parallel development

Provides a detailed history of changes for

accountability
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Repository (Repo): A directory containing all project files and history

Commit: A snapshot of changes

Branch: Parallel versions of the repository

Merge: Combining different branches

Remote: A repository hosted elsewhere (e.g., GitHub, GitLab)
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Initialize Repository: Start a new repository with git init .

Make Changes: Modify files in your working directory.

Commit Changes: Save snapshots of your changes with git commit .

Push to Remote: Upload your commits to a remote repository with git push .

Pull Updates: Fetch and integrate changes from the remote repository with git pull .
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Example
1 $ # Initialize a new Git repository

2 $ git init my_project # Create the directory and a .git folder in it

3 $ cd my_project

4 $ # Create a file and commit it
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8 > Initial commit

9 > 1 file changed, 1 insertion(+)

10 > create mode 100644 README.md

11 $ # Check the status

12 $ git status

13 > On branch main

14 > nothing to commit, working tree clean

15 $ # Change a file

16 $ echo "\nthis is my cool description." >> README.md

$
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Recap
Version Control: Manage changes to files over time, enable collaboration and track history.

Git: The (coolest 😉) software to do version control with.

Key Concepts: Repository, Commit, Branch, Merge, Remote.

Basic Commands: git init , git add , git commit , git status , git log , git diff .
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Collaborating with Remotes
Remote Repository: A version of your project

hosted on the internet.

Push/Pull: Upload/Download changes to and from

remote.

Origin: The name of the remote repository.

Clone: Create a local copy of a remote repository.
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Best Practices (for Researchers)
📝 Use meaningful commit messages

📁 Keep repositories organized

🚫 Use .gitignore  for large files and temporary files

🔄 Regularly push to a remote repository

🌿 Use branches for experimental changes



GitHub, GitLab, and Alternatives
GitHub: Popular for open-source projects, big publicity/community

GitLab: Itself Open-Source, available from RWTH-Aachen for Education only

Gitlab-CE: Same as above, but more free license, less features



Advanced Topics (t.b.d.)
Using Git with Jupyter Notebooks

Git Large File Storage (LFS) for datasets

Continuous Integration (CI) for automating workflows

Working with submodules for modular projects



Summary

Version Control helps manage research projects

efficiently

Enables collaboration and reproducibility

Learning basic Git commands is a valuable skill

Use hosted platforms for better sharing and

tracking

Start early, commit often, write good commit

messages


