F IV LD s UL AT LR RS T

e fd b b e L Ve - VW L L WULTR O e AR TS AT AR

s Bt W

adladed Eald —‘

x.]
Qa7 | EII310)

o I Qe .
1 T

e

Gk

® 1,000

| Sag |

E)

W

WoAnd Le AchE

VERESOM

https://richardpolzin.com/

—_
S

O© 0 3 O U1 A WV DN

. Version Control for Researchers

4 Version Control 4

4 Version Control 4
What?

4 Version Control /4
What?

= A system for managing changes to files over time

+4 Version Control /4
What?

= A system for managing changes to files over time

= Allows simultaneous work on the same project

4 Version Control /4
What?

= A system for managing changes to files over time
= Allows simultaneous work on the same project

= A history of changes and the ability to revert

4 Version Control /4
What'?

A system for managing changes to files over time
= Allows simultaneous work on the same project
= A history of changes and the ability to revert
= Logically separate features &

4 Version Control /4
What?

A system for managing changes to files over time
= Allows simultaneous work on the same project
= A history of changes and the ability to revert
= Logically separate features &

Why?

4 Version Control /4
What'?

A system for managing changes to files over time
= Allows simultaneous work on the same project
= A history of changes and the ability to revert
= Logically separate features &

Why?

= Makes collaboration easier §

4 “+
What7

A system for managing changes to files over time
= Allows simultaneous work on the same project
= A history of changes and the ability to revert
= Logically separate features &

Why?
= Makes collaboration easier §

= Who deleted my files? Where is my main.py??

4 “+
What7

A system for managing changes to files over time
= Allows simultaneous work on the same project
= A history of changes and the ability to revert
= Logically separate features &

Why?
= Makes collaboration easier §
= Who deleted my files? Where is my main.py??

= Tracking changes and ensuring reproducibility

4 “+
What7

A system for managing changes to files over time
= Allows simultaneous work on the same project
= A history of changes and the ability to revert
= Logically separate features &

Why?

Makes collaboration easier §
= Who deleted my files? Where is my main.py??
= Tracking changes and ensuring reproducibility

= Avoiding "final version v3 revised FINAL.py" &

4 “+
What7

A system for managing changes to files over time
= Allows simultaneous work on the same project
= A history of changes and the ability to revert
= Logically separate features &

Why?
Makes collaboration easier §
= Who deleted my files? Where is my main.py??
= Tracking changes and ensuring reproducibility
= Avoiding "final version v3 revised FINAL.py" &

= Backup and restoring previous versions

4+ 4 How

What7

A system for managing changes to files over time
= Allows simultaneous work on the same project
= A history of changes and the ability to revert
= Logically separate features &

Why?
Makes collaboration easier §
= Who deleted my files? Where is my main.py??
= Tracking changes and ensuring reproducibility
= Avoiding "final version v3 revised FINAL.py" &

= Backup and restoring previous versions

4+ 4 How

Wh I Git of course!
d

A system for managing changes to files over time
= Allows simultaneous work on the same project
= A history of changes and the ability to revert
= Logically separate features &

Why?
Makes collaboration easier §
= Who deleted my files? Where is my main.py??
= Tracking changes and ensuring reproducibility
= Avoiding "final version v3 revised FINAL.py" &

= Backup and restoring previous versions

4 4 How
Git of course!

What? = A distributed version control system (VCS)
A system for managing changes to files over time

= Allows simultaneous work on the same project
= A history of changes and the ability to revert
= Logically separate features &

Why?
Makes collaboration easier §
= Who deleted my files? Where is my main.py??
= Tracking changes and ensuring reproducibility
= Avoiding "final version v3 revised FINAL.py" &

= Backup and restoring previous versions

4 4 How?
Git of course!

What? = A distributed version control system (VCS)

A system for managing changes to files over time . .0 changes in code and text files
= Allows simultaneous work on the same project
= A history of changes and the ability to revert

= Logically separate features &

Why?
Makes collaboration easier §
= Who deleted my files? Where is my main.py??
= Tracking changes and ensuring reproducibility
= Avoiding "final version v3 revised FINAL.py" &

= Backup and restoring previous versions

4 4 How?
Git of course!

What? = A distributed version control system (VCS)

A system for managing changes to files over time . .0 changes in code and text files

= Allows simultaneous work on the same project = Enables collaboration across different versions
= A history of changes and the ability to revert

= Logically separate features &

Why?
Makes collaboration easier §
= Who deleted my files? Where is my main.py??
= Tracking changes and ensuring reproducibility
= Avoiding "final version v3 revised FINAL.py" &

= Backup and restoring previous versions

4 4 How
Git of course!

What? = A distributed version control system (VCS)

A system for managing changes to files over time Tracks changes in code and text files

= Allows simultaneous work on the same project = Enables collaboration across different versions

= A history of changes and the ability to revert = Supports parallel development

= Logically separate features &

Why?
Makes collaboration easier §
= Who deleted my files? Where is my main.py??
= Tracking changes and ensuring reproducibility
= Avoiding "final version v3 revised FINAL.py" &

= Backup and restoring previous versions

4 4 How
Git of course!

What? = A distributed version control system (VCS)

A system for managing changes to files over time Tracks changes in code and text files

= Allows simultaneous work on the same project = Enables collaboration across different versions

= A history of changes and the ability to revert = Supports parallel development

= Logically separate features & = Provides a detailed history of changes for
accountability

Why?
Makes collaboration easier §

= Who deleted my files? Where is my main.py??

= Tracking changes and ensuring reproducibility

= Avoiding "final version v3 revised FINAL.py" &

= Backup and restoring previous versions

Git Workshop
Key Concepts

Git Workshop
Key Concepts

= Repository (Repo): A directory containing all project files and history

Git Workshop
Key Concepts

= Repository (Repo): A directory containing all project files and history

Git Workshop
Key Concepts

= Repository (Repo): A directory containing all project files and history

= Commit: A snapshot of changes

Git Workshop
Key Concepts

= Repository (Repo): A directory containing all project files and history
= Commit: A snapshot of changes

= Branch: Parallel versions of the repository

Git Workshop
Key Concepts

= Repository (Repo): A directory containing all project files and history
= Commit: A snapshot of changes
= Branch: Parallel versions of the repository

= Merge: Combining different branches

Git Workshop
Key Concepts

Repository (Repo): A directory containing all project files and history
Commit: A snapshot of changes

Branch: Parallel versions of the repository

Merge: Combining different branches

Remote: A repository hosted elsewhere (e.g., GitHub, GitLab)

Initial Setup

Initial Setup

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Initial Setup

Configure Git
git config --global user.name "Your Name
git config --global user.email "your.email@example.com

Initial Setup

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Configure Git
git config --global user.name "Your Name"
git config --global user.email '"your.email@example.com"

Commit Changes Push to Remote Collaborate with Team
Initialize Repository Change Things Pull Updates from Remote

Initial Setup

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Configure Git
git config --global user.name "Your Name"
git config --global user.email '"your.email@example.com"

Commit Changes Push to Remote Collaborate with Team
Initialize Repository Change Things Pull Updates from Remote

= [nitialize Repository: Start a new repository with git init .

Initial Setup

sudo apt install git
brew install git
choco install git.install

Configure Git
git config --global user.name "Your Name"
git config --global user.email '"your.email@example.com"

Commit Changes Push to Remote Collaborate with Team
Initialize Repository Change Things Pull Updates from Remote

= [nitialize Repository: Start a new repository with git init .

= Make Changes: Modify files in your working directory.

Initial Setup

sudo apt install git
brew install git
choco install git.install

Configure Git
git config --global user.name "Your Name"
git config --global user.email '"your.email@example.com"

Commit Changes Push to Remote Collaborate with Team
Initialize Repository Change Things Pull Updates from Remote

= [nitialize Repository: Start a new repository with git init .
= Make Changes: Modify files in your working directory.

= Commit Changes: Save snapshots of your changes with git commit .

Initial Setup

Configure Git

git config --global user.name
git config --global user.email

Your Name

your.email@example.com

Local

Initialize Repository

Change Things

//:::i

Commit Changes

Remote

Push to Remote

Collaborate with Team

Pull Updates from Remote

= [nitialize Repository: Start a new repository with git init .

= Make Changes: Modify files in your working directory.

= Commit Changes: Save snapshots of your changes with git commit .

= Push to Remote: Upload your commits to a remote repository with git push .

Initial Setup

Configure Git

git config --global user.name
git config --global user.email

Your Name

your.email@example.com

Local

Initialize Repository

Change Things

//:::i

Commit Changes

Remote

Push to Remote

Collaborate with Team

Pull Updates from Remote

= [nitialize Repository: Start a new repository with git init .

= Make Changes: Modify files in your working directory.

= Commit Changes: Save snapshots of your changes with git commit .

= Push to Remote: Upload your commits to a remote repository with git push .

= Pull Updates: Fetch and integrate changes from the remote repository with git pull .

Example

13

A AV OV A AV VIV A A A A A

Initialize a new Git repository
git init my_project # Create the directory and a .git folder in it
cd my_project

echo "# My Research Project" > README.md
git add README.md

git commit -m "Initial commit

Initial commit

1 file changed, 1 insertion(+)

create mode 100644 README.md

git status
On branch main

nothing to commit, working tree clean

echo "\nthis is my cool description.'" >> README.md

Example

o U1 p

A AV VA AV V VA A A A A A A

git init my_project

cd my_project

Create a file and commit it

echo "# My Research Project" > README.md
git add README.md

git commit -m "Initial commit

Initial commit

1 file changed, 1 insertion(+)

create mode 100644 README.md

git status
On branch main
nothing to commit, working tree clean

echo "\nthis is my cool description.'" >> README.md

Initialize a new Git repository

git init my_project # Create the directory and a .git folder in it
cd my_project

Create a file and commit it

echo "# My Research Project" > README.md

git add README.md

git commit -m "Initial commit'

Initial commit

1 file changed, 1 insertion(+)

create mode 100644 README.md

Check the status

git status

On branch main

nothing to commit, working tree clean

Change a file

echo "\nthis is my cool description.'" >> README.md

Example

10

$ git commit -m "Initial commit"
> Initial commit

> 1 file changed, 1 insertion(+)
> create mode 100644 README.md

11
12

Create a file and commit it

echo "# My Research Project" > README.

git add README.md

git commit -m "Initial commit
Initial commit

1 file changed, 1 insertion(+)
create mode 100644 README.md

Check the status

git status

On branch main

nothing to commit, working tree clean
Change a file

echo "\nthis is my cool description.
Check the status

git status

On branch master

Changes not staged for commit:

md

>> README .md

Example

11
12
13
14

V V V &8 &4 4 &4 V V & & V V V &4 & &

echo "# My Research Project" > README.md
git add README.md

git commit -m "Initial commit

Initial commit

1 file changed, 1 insertion(+)

create mode 100644 README.md

Check the status

git status

On branch main

nothing to commit, working tree clean

echo "\nthis is my cool description.'" >> README.md

git status
On branch master
Changes not staged commit:
(use "git add <file>..." to update what will be committed)

Example

Initial commit
1 file changed, 1 insertion(+)
create mode 100644 README.md

git status

On branch main

nothing to commit, working tree clean

Change a file

echo "\nthis is my cool description." >> README.md

15
16

git status

On branch master

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>...'" to discard changes in working directory)
modified: README . md

V V V V V V &&868 a4V V - V V V

Example

17
18

>
$
$
>
>
$
$
$
$
>
>
>
>
>
>
>
$

create mode 100644 README.md
Check the status
git status
On branch main
nothing to commit, working tree clean
Change a file
echo "\nthis is my cool description." >> README.md
Check the status
git status
On branch master
Changes not staged for commit:
(use "git add <file>..." to update what will be committed)

(use "git restore <file>...'" to discard changes in working directory)

modified: README . md

no changes added to commit (use "git add" and/or "git commit -a'")

Check the differences

Example

On branch main

nothing to commit, working tree clean

17 $ # Check the status

18 $ git status

19 > On branch master

20 > Changes not staged for commit:

21 > (use "git add <file>..." to update what will be committed)

22 > (use "git restore <file>...'" to discard changes in working directory)
23 > modified: README . md

24 >

25 > no changes added to commit (use '"git add" and/or "git commit -a"

diff --git a/README.md b/README.md
index 22c86a3..0628ec3 100644

Example

On branch master

Changes not staged for commit:
(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)
modified: README . md

no changes added to commit (use '"git add" and/or "git commit -a")
Check the differences
git diff
diff --git a/README.md b/README.md
index 22c86a3..0628ec3 100644
--- a/README.md
+++ b/README.md
ee -1 +1,3 @e
My Research Project

26
27

+

V VV V V V V V &#eV V V V V V V

+this is my cool description.

Example

modified: README . md

no changes added to commit (

26 $ # Check the differences

27 $ git diff

28 > diff --git a/README.md b/README.md
29 > index 22c86a3..0628ec3 100644

30 > --- a/README.md

il > +++ b/README.md

32 > @e -1 +1,3 @e

33 > # My Research Project

34 > +

35 > +this is my cool description.

commit ©127a4e6b@3cec81c38391dc643£50fdfee75f4b (
Author: Richard Polzin <richard.polzin@posteo.de

36
37

git diff
diff --git a/README.md b/README.md
index 22c86a3..0628ec3 100644
--- a/README.md
+++ b/README.md
@ -1 +1,3 @e
My Research Project
+
+this is my cool description.
Check the commit history
git log
commit 0127a4e6b03cec81c38391dc643f50fdfee75f4b (HEAD -> main)
Author: Richard Polzin <richard.polzingposteo.de>
Date: Mon Feb 3 13:37:57 2025 +0100

Initial commit

Example

git log

commit 0127a4e6b03cec81c38391dc643£50fdfee75f4b (HEAD -> main)
Author: Richard Polzin <richard.polzingposteo.de>

Date: Mon Feb 3 13:37:57 2025 +0100

V V. V V V &

Initial commit

Recap

Recap

= Version Control: Manage changes to files over time, enable collaboration and track history.

Recap

= Version Control: Manage changes to files over time, enable collaboration and track history.

» Git: The (coolest @) software to do version control with.

Recap

= Version Control: Manage changes to files over time, enable collaboration and track history.
» Git: The (coolest @) software to do version control with.

= Key Concepts: Repository, Commit, Branch, Merge, Remote.

Recap

= Version Control: Manage changes to files over time, enable collaboration and track history.
» Git: The (coolest @) software to do version control with.
= Key Concepts: Repository, Commit, Branch, Merge, Remote.

= Basic Commands: git init, git add, git commit , git status, git log, git diff .

Branching and Merging

Branching and Merging

Branching and Merging

= [solation: Work on different features or fixes separately from the main codebase.

Branching and Merging

= [solation: Work on different features or fixes separately from the main codebase.

= Parallel Development: Enable team members to work on separate features simultaneously.

Branching and Merging

= [solation: Work on different features or fixes separately from the main codebase.
= Parallel Development: Enable team members to work on separate features simultaneously.

= History Tracking: Maintain individual commit histories for easy tracking and reversion.

Branching and Merging

= [solation: Work on different features or fixes separately from the main codebase.
= Parallel Development: Enable team members to work on separate features simultaneously.
= History Tracking: Maintain individual commit histories for easy tracking and reversion.

= Merging: Combine changes from different branches back into the main codebase.

Branching and Merging

= [solation: Work on different features or fixes separately from the main codebase.

= Parallel Development: Enable team members to work on separate features simultaneously.
= History Tracking: Maintain individual commit histories for easy tracking and reversion.

= Merging: Combine changes from different branches back into the main codebase.

= Experimentation: Safely test new ideas without affecting the stable codebase.

Branching and Merging

= [solation: Work on different features or fixes separately from the main codebase.

= Parallel Development: Enable team members to work on separate features simultaneously.
= History Tracking: Maintain individual commit histories for easy tracking and reversion.

= Merging: Combine changes from different branches back into the main codebase.

= Experimentation: Safely test new ideas without affecting the stable codebase.

Create and switch to a new branch
git checkout -b new_feature

Branching and Merging

= [solation: Work on different features or fixes separately from the main codebase.

= Parallel Development: Enable team members to work on separate features simultaneously.
= History Tracking: Maintain individual commit histories for easy tracking and reversion.

= Merging: Combine changes from different branches back into the main codebase.

= Experimentation: Safely test new ideas without affecting the stable codebase.

Create and switch to a new branch
git checkout -b new_feature

Branching and Merging

= [solation: Work on different features or fixes separately from the main codebase.

= Parallel Development: Enable team members to work on separate features simultaneously.
= History Tracking: Maintain individual commit histories for easy tracking and reversion.

= Merging: Combine changes from different branches back into the main codebase.

= Experimentation: Safely test new ideas without affecting the stable codebase.

Merge changes back to main branch
git checkout main
git merge new_feature

Branching and Merging

= [solation: Work on different features or fixes separately from the main codebase.

= Parallel Development: Enable team members to work on separate features simultaneously.
= History Tracking: Maintain individual commit histories for easy tracking and reversion.

= Merging: Combine changes from different branches back into the main codebase.

= Experimentation: Safely test new ideas without affecting the stable codebase.

Merge changes back to main branch
git checkout main
git merge new_feature

Collaborating with Remotes

Collaborating with Remotes

= Remote Repository: A version of your project

hosted on the internet.

Collaborating with Remotes

= Remote Repository: A version of your project
hosted on the internet.
= Push/Pull: Upload/Download changes to and from

remote.

Collaborating with Remotes

Remote Repository: A version of your project
hosted on the internet.

Push/Pull: Upload/Download changes to and from
remote.

Origin: The name of the remote repository.

Collaborating with Remotes

Remote Repository: A version of your project
hosted on the internet.

Push/Pull: Upload/Download changes to and from
remote.

Origin: The name of the remote repository.

Clone: Create a local copy of a remote repository.

Best Practices (for Researchers)

Best Practices (for Researchers)

» B Use meaningful commit messages

Best Practices (for Researchers)

» B Use meaningful commit messages

= @ Keep repositories organized

Best Practices (for Researchers)

» B Use meaningful commit messages
= @ Keep repositories organized

m (0 Use .gitignore for large files and temporary files

Best Practices (for Researchers)

» B Use meaningful commit messages
= @ Keep repositories organized

» (L) Use .gitignore for large files and temporary files

= & Regularly push to a remote repository

Best Practices (for Researchers)

» B Use meaningful commit messages

= @ Keep repositories organized

» (L) Use .gitignore for large files and temporary files
= Regularly push to a remote repository

= V£ Use branches for experimental changes

GitHub, GitLab, and Alternatives

= GitHub: Popular for open-source projects, big publicity/community

= GitLab: Itself Open-Source, available from RWTH-Aachen for Education only

= Gitlab-CE: Same as above, but more free license, less features

Advanced Topics (t.b.d.)

Using Git with Jupyter Notebooks
= Git Large File Storage (LFS) for datasets
= Continuous Integration (CI) for automating workflows

= Working with submodules for modular projects

Version Control helps manage research projects
efficiently

Enables collaboration and reproducibility
Learning basic Git commands is a valuable skill
Use hosted platforms for better sharing and
tracking

Start early, commit often, write good commit

messages

THIS IS GIT. IT TRACKS COLLABORATIVE LIORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE MODEL.

COOL. HOU DO LEVSE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE. THEM To SYNC UR
IF Yo GET ERRORS, SAVE YOUR WORK
ELSEWHERE, DELETE THE. PROJECT,
AND DOWNLOAD A FRESH COPY.

