
Version Control for Researchers
Richard Polzin (4.11.2025)

https://richardpolzin.com/

1. Version Control for Researchers

2.

3. Git Workshop

4. Install Git

5. Example

6. Recap

7. Branching and Merging

8. Branching and Merging

9. Best Practices (for Researchers)

10. Summary

✨Version Control✨

✨Version Control✨

What?

✨Version Control✨

What?
A system for managing changes to files over time

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

Tracking changes and ensuring reproducibility

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

Tracking changes and ensuring reproducibility

Avoiding "final_version_v3_revised_FINAL.py" 😵‍💫

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

Tracking changes and ensuring reproducibility

Avoiding "final_version_v3_revised_FINAL.py" 😵‍💫

Backup and restoring previous versions

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

Tracking changes and ensuring reproducibility

Avoiding "final_version_v3_revised_FINAL.py" 😵‍💫

Backup and restoring previous versions

How?✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

Tracking changes and ensuring reproducibility

Avoiding "final_version_v3_revised_FINAL.py" 😵‍💫

Backup and restoring previous versions

How?
Git of course!

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

Tracking changes and ensuring reproducibility

Avoiding "final_version_v3_revised_FINAL.py" 😵‍💫

Backup and restoring previous versions

How?
Git of course!

A distributed version control system (VCS)

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

Tracking changes and ensuring reproducibility

Avoiding "final_version_v3_revised_FINAL.py" 😵‍💫

Backup and restoring previous versions

How?
Git of course!

A distributed version control system (VCS)

Tracks changes in code and text files

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

Tracking changes and ensuring reproducibility

Avoiding "final_version_v3_revised_FINAL.py" 😵‍💫

Backup and restoring previous versions

How?
Git of course!

A distributed version control system (VCS)

Tracks changes in code and text files

Enables collaboration across different versions

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

Tracking changes and ensuring reproducibility

Avoiding "final_version_v3_revised_FINAL.py" 😵‍💫

Backup and restoring previous versions

How?
Git of course!

A distributed version control system (VCS)

Tracks changes in code and text files

Enables collaboration across different versions

Supports parallel development

✨Version Control✨

What?
A system for managing changes to files over time

Allows simultaneous work on the same project

A history of changes and the ability to revert

Logically separate features 🤯

Why?
Makes collaboration easier 🥇

Who deleted my files? Where is my main.py??

Tracking changes and ensuring reproducibility

Avoiding "final_version_v3_revised_FINAL.py" 😵‍💫

Backup and restoring previous versions

How?
Git of course!

A distributed version control system (VCS)

Tracks changes in code and text files

Enables collaboration across different versions

Supports parallel development

Provides a detailed history of changes for

accountability

✨Version Control✨

Git Workshop
Key Concepts

Git Workshop
Key Concepts

Repository (Repo): A directory containing all project files and history

Git Workshop
Key Concepts

Repository (Repo): A directory containing all project files and history

Git Workshop
Key Concepts

Repository (Repo): A directory containing all project files and history

Commit: A snapshot of changes

Git Workshop
Key Concepts

Repository (Repo): A directory containing all project files and history

Commit: A snapshot of changes

Branch: Parallel versions of the repository

Git Workshop
Key Concepts

Repository (Repo): A directory containing all project files and history

Commit: A snapshot of changes

Branch: Parallel versions of the repository

Merge: Combining different branches

Git Workshop
Key Concepts

Repository (Repo): A directory containing all project files and history

Commit: A snapshot of changes

Branch: Parallel versions of the repository

Merge: Combining different branches

Remote: A repository hosted elsewhere (e.g., GitHub, GitLab)

Initial Setup

Initial Setup

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Configure Git

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

Initial Setup

Configure Git

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Initial Setup

RemoteLocal

Initialize Repository Change Things

Commit Changes Push to Remote Collaborate with Team

Pull Updates from Remote

Configure Git

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Initial Setup

RemoteLocal

Initialize Repository Change Things

Commit Changes Push to Remote Collaborate with Team

Pull Updates from Remote

Initialize Repository: Start a new repository with git init .

Configure Git

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Initial Setup

RemoteLocal

Initialize Repository Change Things

Commit Changes Push to Remote Collaborate with Team

Pull Updates from Remote

Initialize Repository: Start a new repository with git init .

Make Changes: Modify files in your working directory.

Configure Git

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Initial Setup

RemoteLocal

Initialize Repository Change Things

Commit Changes Push to Remote Collaborate with Team

Pull Updates from Remote

Initialize Repository: Start a new repository with git init .

Make Changes: Modify files in your working directory.

Commit Changes: Save snapshots of your changes with git commit .

Configure Git

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Initial Setup

RemoteLocal

Initialize Repository Change Things

Commit Changes Push to Remote Collaborate with Team

Pull Updates from Remote

Initialize Repository: Start a new repository with git init .

Make Changes: Modify files in your working directory.

Commit Changes: Save snapshots of your changes with git commit .

Push to Remote: Upload your commits to a remote repository with git push .

Configure Git

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Initial Setup

RemoteLocal

Initialize Repository Change Things

Commit Changes Push to Remote Collaborate with Team

Pull Updates from Remote

Initialize Repository: Start a new repository with git init .

Make Changes: Modify files in your working directory.

Commit Changes: Save snapshots of your changes with git commit .

Push to Remote: Upload your commits to a remote repository with git push .

Pull Updates: Fetch and integrate changes from the remote repository with git pull .

Configure Git

git config --global user.name "Your Name"

git config --global user.email "your.email@example.com"

Install Git

sudo apt install git # Linux

brew install git # macOS

choco install git.install # Windows

Example
1 $ # Initialize a new Git repository

2 $ git init my_project # Create the directory and a .git folder in it

3 $ cd my_project

4 $ # Create a file and commit it

5 $ echo "# My Research Project" > README.md

6 $ git add README.md

7 $ git commit -m "Initial commit"

8 > Initial commit

9 > 1 file changed, 1 insertion(+)

10 > create mode 100644 README.md

11 $ # Check the status

12 $ git status

13 > On branch main

14 > nothing to commit, working tree clean

15 $ # Change a file

16 $ echo "\nthis is my cool description." >> README.md

$

Example

4 $ # Create a file and commit it

5 $ echo "# My Research Project" > README.md

6 $ git add README.md

1 $ # Initialize a new Git repository

2 $ git init my_project # Create the directory and a .git folder in it

3 $ cd my_project

7 $ git commit -m "Initial commit"

8 > Initial commit

9 > 1 file changed, 1 insertion(+)

10 > create mode 100644 README.md

11 $ # Check the status

12 $ git status

13 > On branch main

14 > nothing to commit, working tree clean

15 $ # Change a file

16 $ echo "\nthis is my cool description." >> README.md

$

Example

7 $ git commit -m "Initial commit"

1 $ # Initialize a new Git repository

2 $ git init my_project # Create the directory and a .git folder in it

3 $ cd my_project

4 $ # Create a file and commit it

5 $ echo "# My Research Project" > README.md

6 $ git add README.md

8 > Initial commit

9 > 1 file changed, 1 insertion(+)

10 > create mode 100644 README.md

11 $ # Check the status

12 $ git status

13 > On branch main

14 > nothing to commit, working tree clean

15 $ # Change a file

16 $ echo "\nthis is my cool description." >> README.md

$

Example

7 $ git commit -m "Initial commit"

8 > Initial commit

9 > 1 file changed, 1 insertion(+)

10 > create mode 100644 README.md

1 $ # Initialize a new Git repository

2 $ git init my_project # Create the directory and a .git folder in it

3 $ cd my_project

4 $ # Create a file and commit it

5 $ echo "# My Research Project" > README.md

6 $ git add README.md

11 $ # Check the status

12 $ git status

13 > On branch main

14 > nothing to commit, working tree clean

15 $ # Change a file

16 $ echo "\nthis is my cool description." >> README.md

17 $ # Check the status

Example

11 $ # Check the status

12 $ git status

4 $ # Create a file and commit it

5 $ echo "# My Research Project" > README.md

6 $ git add README.md

7 $ git commit -m "Initial commit"

8 > Initial commit

9 > 1 file changed, 1 insertion(+)

10 > create mode 100644 README.md

13 > On branch main

14 > nothing to commit, working tree clean

15 $ # Change a file

16 $ echo "\nthis is my cool description." >> README.md

17 $ # Check the status

18 $ git status

19 > On branch master

20 > Changes not staged for commit:

Example

11 $ # Check the status

12 $ git status

13 > On branch main

14 > nothing to commit, working tree clean

5 $ echo "# My Research Project" > README.md

6 $ git add README.md

7 $ git commit -m "Initial commit"

8 > Initial commit

9 > 1 file changed, 1 insertion(+)

10 > create mode 100644 README.md

15 $ # Change a file

16 $ echo "\nthis is my cool description." >> README.md

17 $ # Check the status

18 $ git status

19 > On branch master

20 > Changes not staged for commit:

21 > (use "git add <file>..." to update what will be committed)

Example

15 $ # Change a file

16 $ echo "\nthis is my cool description." >> README.md

8 > Initial commit

9 > 1 file changed, 1 insertion(+)

10 > create mode 100644 README.md

11 $ # Check the status

12 $ git status

13 > On branch main

14 > nothing to commit, working tree clean

17 $ # Check the status

18 $ git status

19 > On branch master

20 > Changes not staged for commit:

21 > (use "git add <file>..." to update what will be committed)

22 > (use "git restore <file>..." to discard changes in working directory)

23 > modified: README.md

24 >

Example

17 $ # Check the status

18 $ git status

10 > create mode 100644 README.md

11 $ # Check the status

12 $ git status

13 > On branch main

14 > nothing to commit, working tree clean

15 $ # Change a file

16 $ echo "\nthis is my cool description." >> README.md

19 > On branch master

20 > Changes not staged for commit:

21 > (use "git add <file>..." to update what will be committed)

22 > (use "git restore <file>..." to discard changes in working directory)

23 > modified: README.md

24 >

25 > no changes added to commit (use "git add" and/or "git commit -a")

26 $ # Check the differences

Example

17 $ # Check the status

18 $ git status

19 > On branch master

20 > Changes not staged for commit:

21 > (use "git add <file>..." to update what will be committed)

22 > (use "git restore <file>..." to discard changes in working directory)

23 > modified: README.md

24 >

25 > no changes added to commit (use "git add" and/or "git commit -a")

13 > On branch main

14 > nothing to commit, working tree clean

15 $ # Change a file

16 $ echo "\nthis is my cool description." >> README.md

26 $ # Check the differences

27 $ git diff

28 > diff --git a/README.md b/README.md

29 > index 22c86a3..0628ec3 100644

Example

26 $ # Check the differences

27 $ git diff

19 > On branch master

20 > Changes not staged for commit:

21 > (use "git add <file>..." to update what will be committed)

22 > (use "git restore <file>..." to discard changes in working directory)

23 > modified: README.md

24 >

25 > no changes added to commit (use "git add" and/or "git commit -a")

28 > diff --git a/README.md b/README.md

29 > index 22c86a3..0628ec3 100644

30 > --- a/README.md

31 > +++ b/README.md

32 > @@ -1 +1,3 @@

33 > # My Research Project

34 > +

35 > +this is my cool description.

Example

26 $ # Check the differences

27 $ git diff

28 > diff --git a/README.md b/README.md

29 > index 22c86a3..0628ec3 100644

30 > --- a/README.md

31 > +++ b/README.md

32 > @@ -1 +1,3 @@

33 > # My Research Project

34 > +

35 > +this is my cool description.

23 > modified: README.md

24 >

25 > no changes added to commit (use "git add" and/or "git commit -a")

36 $ # Check the commit history

37 $ git log

38 > commit 0127a4e6b03cec81c38391dc643f50fdfee75f4b (HEAD -> main)

39 > Author: Richard Polzin <richard.polzin@posteo.de>

Example

36 $ # Check the commit history

37 $ git log

$

27 $ git diff

28 > diff --git a/README.md b/README.md

29 > index 22c86a3..0628ec3 100644

30 > --- a/README.md

31 > +++ b/README.md

32 > @@ -1 +1,3 @@

33 > # My Research Project

34 > +

35 > +this is my cool description.

38 > commit 0127a4e6b03cec81c38391dc643f50fdfee75f4b (HEAD -> main)

39 > Author: Richard Polzin <richard.polzin@posteo.de>

40 > Date: Mon Feb 3 13:37:57 2025 +0100

41 >

42 > Initial commit

Example

37 $ git log

38 > commit 0127a4e6b03cec81c38391dc643f50fdfee75f4b (HEAD -> main)

39 > Author: Richard Polzin <richard.polzin@posteo.de>

40 > Date: Mon Feb 3 13:37:57 2025 +0100

41 >

42 > Initial commit

$

27 $ git diff

28 > diff --git a/README.md b/README.md

29 > index 22c86a3..0628ec3 100644

30 > --- a/README.md

31 > +++ b/README.md

32 > @@ -1 +1,3 @@

33 > # My Research Project

34 > +

35 > +this is my cool description.

36 $ # Check the commit history

Recap

Recap
Version Control: Manage changes to files over time, enable collaboration and track history.

Recap
Version Control: Manage changes to files over time, enable collaboration and track history.

Git: The (coolest 😉) software to do version control with.

Recap
Version Control: Manage changes to files over time, enable collaboration and track history.

Git: The (coolest 😉) software to do version control with.

Key Concepts: Repository, Commit, Branch, Merge, Remote.

Recap
Version Control: Manage changes to files over time, enable collaboration and track history.

Git: The (coolest 😉) software to do version control with.

Key Concepts: Repository, Commit, Branch, Merge, Remote.

Basic Commands: git init , git add , git commit , git status , git log , git diff .

Branching and Merging
main

feature-1

feature-2

Ini
tia

l C
om

mit

Add
 fe

atu
re

A

Mino
r fi

x

Add
 fe

atu
re

B

Refa
cto

r fe
atu

re
A

Fina
l to

uc
he

s

Branching and Merging

Branching and Merging

Isolation: Work on different features or fixes separately from the main codebase.

Branching and Merging

Isolation: Work on different features or fixes separately from the main codebase.

Parallel Development: Enable team members to work on separate features simultaneously.

Branching and Merging

Isolation: Work on different features or fixes separately from the main codebase.

Parallel Development: Enable team members to work on separate features simultaneously.

History Tracking: Maintain individual commit histories for easy tracking and reversion.

Branching and Merging

Isolation: Work on different features or fixes separately from the main codebase.

Parallel Development: Enable team members to work on separate features simultaneously.

History Tracking: Maintain individual commit histories for easy tracking and reversion.

Merging: Combine changes from different branches back into the main codebase.

Branching and Merging

Isolation: Work on different features or fixes separately from the main codebase.

Parallel Development: Enable team members to work on separate features simultaneously.

History Tracking: Maintain individual commit histories for easy tracking and reversion.

Merging: Combine changes from different branches back into the main codebase.

Experimentation: Safely test new ideas without affecting the stable codebase.

Branching and Merging

Isolation: Work on different features or fixes separately from the main codebase.

Parallel Development: Enable team members to work on separate features simultaneously.

History Tracking: Maintain individual commit histories for easy tracking and reversion.

Merging: Combine changes from different branches back into the main codebase.

Experimentation: Safely test new ideas without affecting the stable codebase.

Create and switch to a new branch

git checkout -b new_feature

Merge changes back to main branch

git checkout main

git merge new_feature

Branching and Merging

Isolation: Work on different features or fixes separately from the main codebase.

Parallel Development: Enable team members to work on separate features simultaneously.

History Tracking: Maintain individual commit histories for easy tracking and reversion.

Merging: Combine changes from different branches back into the main codebase.

Experimentation: Safely test new ideas without affecting the stable codebase.

Create and switch to a new branch

git checkout -b new_feature

Merge changes back to main branch

git checkout main

git merge new_feature

Branching and Merging

Isolation: Work on different features or fixes separately from the main codebase.

Parallel Development: Enable team members to work on separate features simultaneously.

History Tracking: Maintain individual commit histories for easy tracking and reversion.

Merging: Combine changes from different branches back into the main codebase.

Experimentation: Safely test new ideas without affecting the stable codebase.

Merge changes back to main branch

git checkout main

git merge new_feature

Create and switch to a new branch

git checkout -b new_feature

Branching and Merging

Isolation: Work on different features or fixes separately from the main codebase.

Parallel Development: Enable team members to work on separate features simultaneously.

History Tracking: Maintain individual commit histories for easy tracking and reversion.

Merging: Combine changes from different branches back into the main codebase.

Experimentation: Safely test new ideas without affecting the stable codebase.

Merge changes back to main branch

git checkout main

git merge new_feature

Create and switch to a new branch

git checkout -b new_feature

Collaborating with Remotes

Collaborating with Remotes
Remote Repository: A version of your project

hosted on the internet.

Collaborating with Remotes
Remote Repository: A version of your project

hosted on the internet.

Push/Pull: Upload/Download changes to and from

remote.

Collaborating with Remotes
Remote Repository: A version of your project

hosted on the internet.

Push/Pull: Upload/Download changes to and from

remote.

Origin: The name of the remote repository.

Collaborating with Remotes
Remote Repository: A version of your project

hosted on the internet.

Push/Pull: Upload/Download changes to and from

remote.

Origin: The name of the remote repository.

Clone: Create a local copy of a remote repository.

Best Practices (for Researchers)

Best Practices (for Researchers)
📝 Use meaningful commit messages

Best Practices (for Researchers)
📝 Use meaningful commit messages

📁 Keep repositories organized

Best Practices (for Researchers)
📝 Use meaningful commit messages

📁 Keep repositories organized

🚫 Use .gitignore for large files and temporary files

Best Practices (for Researchers)
📝 Use meaningful commit messages

📁 Keep repositories organized

🚫 Use .gitignore for large files and temporary files

🔄 Regularly push to a remote repository

Best Practices (for Researchers)
📝 Use meaningful commit messages

📁 Keep repositories organized

🚫 Use .gitignore for large files and temporary files

🔄 Regularly push to a remote repository

🌿 Use branches for experimental changes

GitHub, GitLab, and Alternatives
GitHub: Popular for open-source projects, big publicity/community

GitLab: Itself Open-Source, available from RWTH-Aachen for Education only

Gitlab-CE: Same as above, but more free license, less features

Advanced Topics (t.b.d.)
Using Git with Jupyter Notebooks

Git Large File Storage (LFS) for datasets

Continuous Integration (CI) for automating workflows

Working with submodules for modular projects

Summary

Version Control helps manage research projects

efficiently

Enables collaboration and reproducibility

Learning basic Git commands is a valuable skill

Use hosted platforms for better sharing and

tracking

Start early, commit often, write good commit

messages

